
Technische Universität München
Institut für Informatik

D-80290 Munich, Germany

Abstraction in Concurrent Systems

Beyond Monotonicity

Towards a Modular Development

Manfred Broy

Manfred Broy 2Abstraction in Concurrent Systems. Princeton, May 2024

Concurrent Interactive Systems: Topics

• Generalized Moore machines are chosen as computational model
◊ Concurrent composition
◊ Compositionality

• Moore machines are a perfect model for explicit concurrency
◊ Crystal clear notion of internal (encapsulation, information hiding) and external (interface)

behavior
◊ Built in notion of time
• Abstractions for the behavior of Moore machines
◊ Interface abstraction: timed and nontimed
◊ Time abstraction
• Interface specifications and their concurrent composition
• Timed based reasoning for untimed system specifications
• Modularity
• Modelling cyber-physical systems

Manfred Broy 3Abstraction in Concurrent Systems. Princeton, May 2024

Operational semantics
Moore machines

Timed interface
behaviors

Untimed interface
behaviors

Model Forms of descriptions

untimed interface specifications,
composition, channel hiding

timed interface specifications,
composition, channel hiding

state transitions with I/O,
composition, channel hiding

a
b
s
t
r
a
c
t
i
o
n

interface abstraction

time abstraction

Manfred Broy 4Abstraction in Concurrent Systems. Princeton, May 2024

Syntactic interfaces

Given channel sets X and Y, a syntactic interface is denoted by

(X�Y)

Sets of typed channels (names of communication lines)

Input X = {x1 : T1, x2 : T2, ... }

Output Y = {y1 : S1, y2 : S2, ... }
Systemx1 : T1

y4 : S4

x4 : T4

x3 : T3x2 : T2

x5 : T5

y1 : S1

y2 : S2

y3 : S3

Manfred Broy 5Abstraction in Concurrent Systems. Princeton, May 2024

Moore machines

For syntactic interface (X � Y), a generalized nondeterministic (total) Moore
machine with state space S is a pair (D, L) where D is a total state transition
function

D: (S ´ Xfin) ® Ã(S ´ Yfin)\{Æ}

and L Í S is a nonempty set of initial states and for a Î Xfin, b Î Yfin, s, s’Î S
(s’, b) Î D(s, a)

where the output b does not depend on the input a but only on the state s.
Formally defined, there exists an output function:

X: S ® Ã(Yfin)\{Æ}
indicating that the output depends only on the state such that

" s Î S, a Î Xfin: X(s) = {b Î Yfin: $ s’ Î S: (s’, b) Î D(s, a)}

Manfred Broy 6Abstraction in Concurrent Systems. Princeton, May 2024

Interaction: Input and Output via Syntactic Interfaces (X�Y)

Set of inputs for a syntactic interface in one step of the system
Xfin = (X → M*)

For input z Î Xfin for each channel xk the sequence of values z(xk) is of type Tk

The same holds for output y Î Yfin

Yfin = (Y → M*)

Manfred Broy 7Abstraction in Concurrent Systems. Princeton, May 2024

Timed Streams

Timed streams (M*)w = ℕ+ → M*

Finite timed streams (M*)* = Èn Î ℕ ({m Î ℕ+: m ≤ n} → M*)

For x Î (M*)w:
x↓t : {n Î ℕ: 1 ≤ n ≤ t} → M*
1 ≤ n ≤ t Þ (x↓t)(n) = x(n)

#x number of elements in stream x
S#x number of elements in x that are in set S

m#x = {m}#x
Type of all timed streams: Tstr M

Manfred Broy 8Abstraction in Concurrent Systems. Princeton, May 2024

Histories of Timed and Untimed Streams

Given a set of typed channel names
X = {c1:T1, …, cm:Tm}

by X we denote channel histories given by families of timed streams,
one timed stream for each of the channels:

Timed histories
X = (X → (M*)w)

Finite timed histories
Xfin = (X → (M*)*)

Manfred Broy 9Abstraction in Concurrent Systems. Princeton, May 2024

Computations of Moore machines and interface abstraction

Given a Moore machine (D, L) for syntactic interface (X�Y) with state space S a
computation is given by
• an infinite stream of states {si Î S: i Î ℕ}

• an input history of x Î X
• an output history y Î Y
such that s0 Î L and

" i Î ℕ: (si+1, y(i+1)) Î D(si, x(i+1))
This way a Moore machine defines an timed interface predicate :

[[D, L]] : X ´ Y → 𝔹
the result of interface abstraction: information hiding of states

Manfred Broy 10Abstraction in Concurrent Systems. Princeton, May 2024

Example of interface specification for a system: predicate GATE

We specify a system by an interface predicate GATE on timed streams
x, u, y, z Î (Data*)w of data as follows

GATE = (x: Data, u: Data � y: Data, z: Data):
" d Î Data: d#x+d#u = d#y+d#z Ù (d#x+d#u = ¥ Þ (d#y = ¥ Ù d#z = ¥))

GATE

x: Data u: Data

z: Data y: Data

Manfred Broy 11Abstraction in Concurrent Systems. Princeton, May 2024

Interface specification: interface predicates and assertions

GATE: X ´ Y → 𝔹
GATE = (X�Y): A

where A is an assertion with free identifiers from X and Y
GATE = (x: Data, u: Data � y: Data, z: Data):

" n Î Data: d#x+d#u = d#y+d#z Ù (d#x+d#u = ¥ Þ (d#y = ¥ Ù d#z = ¥))

We write Q::(X�Y) to express that Q is an interface predicate for the syntactic
interface (X�Y); we write QA for the assertion on streams defined by Q

predicate assertion A

GATE

x: Data u: Data

z: Data y: Datasyntactic interface

Manfred Broy 12Abstraction in Concurrent Systems. Princeton, May 2024

Parts of interface specifications

An interface specification is given by

• a name (such as GATE)

• a syntactic interface
GATE::(x: Data, u: Data � y: Data, z: Data)

• an interface assertion for the involved streams
 GATEA =

(" d Î Data: d#x+d#u = d#y+d#z Ù (d#x+d#u = ¥ Þ (d#y = ¥ Ù d#z = ¥)))

An interface specification defines a functional specification of an interface
predicate GATE::(x: Data, u: Data � y: Data, z: Data) on histories/streams

Strong Causality

Manfred Broy 14Abstraction in Concurrent Systems. Princeton, May 2024

Strongly Causal Interface Predicates

Q :: (X�Y)

is strongly causal if for all x, x' Î X, y Î Y, t Î ℕ

x↓t = x'↓t Ù Q(x, y) Þ $ y'Î Y: Q(x', y') Ù y↓t+1 = y'↓t+1

For every interface predicate Q::(X�Y)
there exists a weakest refinement Q© of Q which is strongly causal

Note: If Q(x, y) = false for all x Î X, y Î Y then Q is strongly causal
Then does not exist a Moore machine with interface behavior that fulfils Q

Manfred Broy 15Abstraction in Concurrent Systems. Princeton, May 2024

Strongly causal refinement of GATE

GATE© = (x: Data, u: Data � y: Data, z: Data):
" n Î Data: d#x+d#u = d#y+d#z Ù (d#x+d#u = ¥ Þ (d#y = ¥ Ù d#z = ¥))

Ù " t Î ℕ: d#x↓t+d#u↓t ≥ d#y↓(t+1)+d#z↓(t+1)

 GATE©

x: Data u: Data

z: Data y: Data

Manfred Broy 16Abstraction in Concurrent Systems. Princeton, May 2024

Strongly causal refinement of GATE

GATE© = (x: Data, u: Data � y: Data, z: Data):
" d Î Data: d#x+d#u ≤ d#y+d#z Ù (d#x+d#u = ¥ Þ (d#y = ¥ Ù d#z = ¥))

Ù " t Î ℕ: d#x↓t+d#u↓t ≥ d#y↓(t+1)+d#z↓(t+1)

Liveness
Strong causality, safetyGATE©

x: Data u: Data

z: Data y: Data

Full Realizability

Manfred Broy 18Abstraction in Concurrent Systems. Princeton, May 2024

Strongly Causal Functions

f: X → Y

is strongly causal if for all x, z Î X, t Î ℕ

x↓t = z↓t Þ f(x)↓t+1 = f(z)↓t+1

Then we write SC[f]

Every strongly causal f has a unique fixpoint (Proof: Banach’s Fixpoint Theorem)

Manfred Broy 19Abstraction in Concurrent Systems. Princeton, May 2024

Fully Realizable Predicates

Given Q::(X�Y)
Real[Q] = {f Î X → Y: SC[f] Ù ∀ x Î X: Q(x, f(x))}

Real[Q] denotes the set of realizations of Q
Q is realizable if $ f Î Real[Q]

Q is fully realizable if Q is realizable and
Q(x, y) = $ f Î Real[Q]: y = f(x)

Every realization f Î Real[Q] defines a strategy to compute y = f(x) given x
such that Q(x, y) holds

Manfred Broy 20Abstraction in Concurrent Systems. Princeton, May 2024

Fully Realizable Predicates

For every predicate Q::(X�Y) there exists a weakest refinement Q® of Q

Q®(x, y) = $ f Î Real[Q]: y = f(x)

Q® is fully realizable if Q is realizable

Q® = false iff Q is not realizable

The interface behavior
 [[D, L]]

of Moore machines (D, L) is strongly causal and fully realizable

Manfred Broy 21Abstraction in Concurrent Systems. Princeton, May 2024

Theorem: Properties of timed interface behavior of Moore machines

For the interface behavior
 [[D, L]] :: (D, L)
of Moore machines (D, L) with syntactic interface (X�Y) we get:

 [[D, L]] is strongly causal

 [[D, L]] is fully realizable

Manfred Broy 22Abstraction in Concurrent Systems. Princeton, May 2024

Theorem

For every fully realizable interface predicate Q::(X�Y) there exists a Moore
machine (D, L) with

Q = [[D, L]]

Manfred Broy 23Abstraction in Concurrent Systems. Princeton, May 2024

From theory to practice

The introduced theory has a strong relationship to practical interactive computing
• Realizations of interface specifications
◊ Have unique fixpoints (Banach, see also later)
◊ Represent computations
• The interface Moore machines corresponds to fully realizable interface

behaviors
• Causality models the relationship between input and output as found for

practical systems
• Fully realizable interface behaviors form a semantic model for the interface

behavior of Moore machines
◊ Realizability introduces a strategy to guarantee certain liveness conditions

• Timed interface behaviors

Concurrent Composition

Manfred Broy 25Abstraction in Concurrent Systems. Princeton, May 2024

Compositionality of Syntactic Interfaces

Two syntactic interfaces (Xk�Yk) for k = 1, 2, are called composable if

X1ÇX2 = Æ

Y1ÇY2 = Æ

and the channels both in X1ÈX2 and Y1ÈY2 have consistent types.

These channels in (X1ÈX2)Ç(Y1ÈY2) are (called) feedback channels.

Moore machines and interface predicates are called composable, if their
syntactic interfaces are composable.

Manfred Broy 26Abstraction in Concurrent Systems. Princeton, May 2024

Concurrent composition of Moore machines

Moore machines (Dk,Lk)::(Xk�Yk), k = 1, 2, with composable syntactic interfaces,
are composed concurrently to a Moore machine, X = (X1ÈX2)\Y, Y = Y1ÈY2,

((D1, L1)r(D2, L2)::(X � Y))

defined by
(D, L) = ((D1, L1) r (D2, L2))

where for
 S = (S1 ´ S2)

 L = {(s1, s2): s1 Î S1 Ù s2 Î S2}

 D((s1, s2), x) = {((t1, t2), y): (t1, y|Y1) Î D1(s1, x|X1) Ù (t2, y|Y2) Î D2(s2, x|X2) }

Manfred Broy 27Abstraction in Concurrent Systems. Princeton, May 2024

Theorems

[[(D1, L1)r(D2, L2)]] = ([[D1, L1]] Ù [[D2, L2]])

(Q1 Þ [[(D1, L1]]) Ù (Q2 Þ [[D2, L2]]) Þ ((Q1ÙQ2) Þ [[(D1, L1)r(D2, L2)]])

Manfred Broy 28Abstraction in Concurrent Systems. Princeton, May 2024

Concurrent Composition of Interface Specifications

Interface predicates Qk::(Xk�Yk), k = 1, 2, with composable syntactic interfaces
are composed concurrently to an interface predicate

(Q1rQ2)::(X � Y)

where X = (X1ÈX2)\Y, Y = Y1ÈY2 and its interface assertion is defined by

(Q1rQ2)A = ((Q1
®
)A Ù (Q2

®
)A)

Q1rQ2

Q1

x1

y1

z1

Q2

x2

y2

z2

z1z2

Manfred Broy 29Abstraction in Concurrent Systems. Princeton, May 2024

Composition of two Gates

TG = (x1: Data, x2: Data � y1: Data, z1: Data, y2: Data, z2: Data):
GATE®(x1, z2, y1, z1) Ù GATE®(x2, z1, y2, z2)

G1rG2

G1: GATE

x1

y1

u1 = z2

G2: GATE

x2

y2

u2 = z1

z2z1

Manfred Broy 30Abstraction in Concurrent Systems. Princeton, May 2024

Theorems

(Q1rQ2) is strongly causal if Q1	and Q2	are strongly causal

(Q1rQ2) is fully realizable if Q1	and Q2	are fully realizable

(Q1rQ2)A Þ (Q1
AÙ Q2

A)

Manfred Broy 31Abstraction in Concurrent Systems. Princeton, May 2024

Note

In most cases, for practical useful interface predicates, we have Q::(X�Y)
Q© = Q®

Given an interface predicates Q::(X�Y)

• There exists a Moore machine that implements Q iff Q is realizable

• There exists a Moore machine with an interface behavior equal to Q iff Q is
fully realizable

• If Q® = false then there does not exist a Moore machine that implements Q

Hiding

Manfred Broy 33Abstraction in Concurrent Systems. Princeton, May 2024

Hiding of Output Streams

Given a specification

Q = (X�Y): A

where A is an interface assertion with free identifiers from X and Y and Y’ Í Y

(Hide Y’: Q)::(X�Y\Y’)

for x Î X, y’ Î Y\Y’
(Hide Y’: Q)(x, y’) = $ y Î Y: Q(x, y) Ù y’ = y|(Y\Y’)

Abstraction of Time

Manfred Broy 35Abstraction in Concurrent Systems. Princeton, May 2024

Untimed streams and histories

M*|w = M* È Mw

Finite Streams: M* = ÈnÎℕ {t Î ℕ: 1 ≤ t ≤ n} → M

Infinite Streams: Mw = ℕ → M

Data type of streams over set M: Str M

Untimed histories
X	 = (X → M*|w)
Xfin = (X → M*)

Manfred Broy 36Abstraction in Concurrent Systems. Princeton, May 2024

Timed and untimed interface behavior specifications

• An interface predicate
Q: X ´ Y → 𝔹

is called a timed specification and we write Q :: (X�Y)

• An interface predicate
R: X ´ Y → 𝔹

is called a untimed specification and we write R :: (XwY)

Manfred Broy 37Abstraction in Concurrent Systems. Princeton, May 2024

From timed to untimed histories and vice versa

Given a timed stream x Î (M*)w we define an untimed stream x Î M*|w by
x = x(1)ˆx(2)ˆx(3)ˆ…

The same notation is used for histories.

Given a timed interface predicate Q :: (X�Y) we define
an untimed interface predicate Q :: (X wY) by

Q(x’, y’) = $ x Î X, y Î Y: Q(x, y) Ù x’ = x Ù y’ = y

For an untimed interface predicate R :: (XwY) define timed interface predicates
R>, R :: (X�Y) by

R>(x, y) = R(x, y)
R = (R>)®

Manfred Broy 38Abstraction in Concurrent Systems. Princeton, May 2024

Theorems

R Þ R

Q® Þ Q

Concurrent composition of untimed interface
predicates

Manfred Broy 40Abstraction in Concurrent Systems. Princeton, May 2024

Composition of two untimed Gates

UTG = (x1: Data, x2: Data � y1: Data, z1: Data, y2: Data, z2: Data):
GATE(x1, z2, y1, z1) Ù GATE(x2, z1, y2, z2)

G1rG2

G1: GATE

x1

y1

u1 = z2

G2: GATE

x2

y2

u2 = z1

z2z1

Manfred Broy 41Abstraction in Concurrent Systems. Princeton, May 2024

Reasoning about GATE(x1, z2, y1, z1) Ù GATE(x2, z1, y2, z2)

Looking for solutions for these feedback equations for streams z1 and z2,
consider as a simple example the following input streams
 x1 = á1 1ñ Ù x2 = á2 2ñ
This input leads (for all d Î Data) to the assertions
d#á1 1ñ+d#z2 = d#y1+d#z1 Ù ((d#á1 1ñ+d#z2) = ¥ Þ (d#y1 = ¥ Ù d#z1 = ¥))
d#á2 2ñ+d#z1 = d#y2+d#z2 Ù ((d#á2 2ñ+d#z1) = ¥ Þ (d#y2 = ¥ Ù d#z2 = ¥))

Solutions for the defining equations:
 y1 = á1 1ñ Ù z1 = áñ Ù y2 = á2 2ñ Ù z2 = áñ
 y1 = á1 1ñ Ù z1 = á1 2ñ Ù y2 = á2 2ñ Ù z2 = á1 2ñ
 y1 = á1 2ñ Ù z1 = á1 2 1ñ Ù y2 = á2 1ñ Ù z2 = á2 1 2ñ
 y1 = á1 1ñ Ù z1 = á3ñ Ù y2 = á2 2ñ Ù z2 = á3ñ here z1 and z2 correspond to

noncausal fixpoints

Manfred Broy 42Abstraction in Concurrent Systems. Princeton, May 2024

Concurrent composition of untimed interface predicates

Concurrent composition of composable untimed interface predicates
Rk::(Xk

 w Yk), for k = 1, 2, leads to an untimed interface predicate

R :: (X w Y)

where X = (X1ÈX2)\Y, Y = Y1ÈY2, defined by (excluding noncausal fixpoints)

R = R1 Ù R2
We write

R1r R2 = R1 Ù R2

Manfred Broy 43Abstraction in Concurrent Systems. Princeton, May 2024

Refinement of Untimed Interface Predicates

The untimed interface predicate Rk is a refinement of untimed interface
predicate Rk where Rk is the weakest time dependent interface predicate of a
Moore machine the time abstraction of which is a refinement of Rk.

For composable untimed interface predicates Rk :: (Xk w Yk) we conclude

Rk Þ (Rk
>)©

Rk Þ Rk

(R1rR2)A Þ R1
A Ù R2

A

R1	r R2 Þ (R1
>)© Ù (R2

>)©

Manfred Broy 44Abstraction in Concurrent Systems. Princeton, May 2024

Composition of untimed GATE

G1 = GATE(x1, z2, y1, z1)
G2 = GATE(x2, z1, y2, z2)

UTG = G1 r G2

UTG = G1 r G2

Manfred Broy 45Abstraction in Concurrent Systems. Princeton, May 2024

The effect of adding strong causality

(G1
>)© Ù (G2

>)©

implies the assertions " d Î Data, t Î ℕ:

d#x1↓t+d#z2↓t ≥ d#y1↓(t+1)+d#z1↓(t+1) Ù d#x2↓t+d#z1↓t ≥ d#y2↓(t+1)+d#z2↓(t+1)

By induction on t we prove from this equation (for timed and nontimed streams)

d#x1 = 0 Ù d#x2 = 0 Þ d#z1 = 0 Ù d#z2 = 0

which excludes for input streams x1 = á1 1ñ Ù x2 = á2 2ñ the feedback according to
the noncausal fixpoint

 y1 = á1 1ñ Ù z1 = á3ñ Ù y2 = á2 2ñ Ù z2 = á3ñ

Manfred Broy 46Abstraction in Concurrent Systems. Princeton, May 2024

Theorem

Concurrent composition of composable fully realizable untimed
interface predicates Rk::(Xk

 w Yk), for k = 1, 2, leads to an interface predicate

R1 r R2 :: (X w Y)

where X = (X1ÈX2)\Y, Y = Y1ÈY2, which is fully realizable!

Moreover
(R1 r R2)A Þ R1

A Ù R2
A

What we prove from R1
A Ù R2

A holds for (R1 r R2)A

Manfred Broy 47Abstraction in Concurrent Systems. Princeton, May 2024

What did we do?

For an untimed interface predicates Rk::(Xk
 w Yk) the interface predicate:

(X w Y): R1
A Ù R2

A

is in general too weak to identify causal fixpoints. Therefore, we instead consider

(X w Y): (R1 Ù R2)A

Deriving the exact specification for concurrent composition of untimed interface
predicates, we
• consider their timed versions, complete them by full realizability (resulting in

false, if they are not realizable),
• compose the result by concurrent composition and
• go back to the untimed version (by time abstraction, which is either false or

fully realizable).

Manfred Broy 48Abstraction in Concurrent Systems. Princeton, May 2024

What justifies this idea?

Every untimed system is executed
• by a timed implementation (a Moore machine);
• therefore we can use this construct to define the precise result of concurrent

composition of untimed system specifications.

Manfred Broy 49Abstraction in Concurrent Systems. Princeton, May 2024

Observations

• The time abstraction for the interface predicate of a Moore machine

[[D, L]]

is well defined and fully realizable
• There are Moore machines with different timed interface behaviors with

identical untimed interface behaviors (“abstraction”)
• For every untimed interface behavior of a Moore machine there is a most

general Moore machine with this untimed interface behavior.

Manfred Broy 50Abstraction in Concurrent Systems. Princeton, May 2024

Abstractions

• A Moore (D, L) machine for syntactic interface (X�Y) can be abstracted to its
fully realizable timed interface behavior

 [[D, L]] :: (X�Y)

• A fully realizable interface behavior Q :: (X�Y) can be abstracted
◊ into a timed interface specification P :: (X�Y) (a nucleus) such that

Q = P®
◊ into an untimed interface behavior

Q :: (X w Y)

Manfred Broy 51Abstraction in Concurrent Systems. Princeton, May 2024

Untimed systems: from theory to practice

• We get a model for untimed interactive computations
• The notions worked out for timed systems carry over to untimed systems
◊ The critical task of concurrent composition of nondeterministic untimed interface behaviors

(represented by predicates) which requires the identification of “least” fixpoints for feedback
loops is solved by using results from timed systems

• Fully realizable untimed systems form a semantic model for the untimed
interface behavior of Moore machines (abstracting away the time steps)

From timed to untimed interface predicates
and vice versa

Manfred Broy 53Abstraction in Concurrent Systems. Princeton, May 2024

Time Abstraction and Timed Representation

• Abstraction
Abs: Y ® Y
Abs(y) = y

• Representation
Rep: X ® (X)

Rep(x) = {z Î X: z = x}

Manfred Broy 54Abstraction in Concurrent Systems. Princeton, May 2024

Time Abstraction

Q = Rep ° Q ° Abs

Q::(XwY)
Q::(X�Y)Rep

x Î X y Î Yx’ Î X
Abs

y’ Î Y

Manfred Broy 55Abstraction in Concurrent Systems. Princeton, May 2024

Time Introduction: From Untimed to Timed Interface Predicates

R> = Abs ° R ° Rep

R>::(X�Y)

R::(XwY) Rep
x Î Xx’ Î X Abs y’ Î Yy Î Y

Manfred Broy 56Abstraction in Concurrent Systems. Princeton, May 2024

Fully realizable untimed interface predicates

An untimed interface predicate R :: (X�Y) is called fully realizable if

R is realizable

and

R = R

Manfred Broy 57Abstraction in Concurrent Systems. Princeton, May 2024

Time insensitive timed system

A fully realizable timed interface predicate Q :: (X�Y) is called time insensitive if

z = x Þ {y Î Y : Q(x, y)} = {y Î Y : Q(z, y)}

• GATE, TCG and TCBG are time insensitive, TCIG is not time insensitive
Predicate Q is called fully time insensitive if Q is time insensitive and

Q = Q

• Then timing of input x to Q influences the timing of the output y but all data
outputs y possible for any input z such that z = x are also possible for input x.
• The timing of output is only restricted by the causality!
• If Q is not time insensitive then there exists input x and z where

{y Î Y : Q(x, y)} ≠ {y Î Y : Q(z, y)}; the data output may depend on the timing.

Manfred Broy 58Abstraction in Concurrent Systems. Princeton, May 2024

Theorem

• If a specification is time insensitive we can reason about its data flow
independent of its timing
◊ The data output depends only on the data input
◊ Of course the timing of the output may depend on the timing of the input
◊ Time abstraction maintains the relation between untimed input and untimed output

• A specification is not time insensitive if its data output is not independent of the
timing of its input

Manfred Broy 59Abstraction in Concurrent Systems. Princeton, May 2024

Properties of fully realizable untimed interface predicates: beyond prefix monotonicity

Fully realizable untimed interface predicates of Moore machines are not prefix
monotonic, in general: Example: GATE – GATE is fully realizable!

GATE(1¥, áñ, y, z) Þ y = 1¥ Ù z = 1¥
GATE(1¥, 2¥, y’, z’) Þ 1#y’ = ¥ Ù 2#y’ = ¥ Ù 1#z’ = ¥ Ù 2#z’ = ¥

GATE	 is not prefix monotonic, since

 1¥ ⊑	1¥ Ù áñ ⊑ 2¥

but
GATE(1¥, áñ, y, z) Ù GATE(1¥, 2¥, y’, z’)

Þ
¬(y ⊑	y’) Ù ¬(z ⊑	z’)

Practical Impacts to
Software and Systems Engineering

Manfred Broy 61Abstraction in Concurrent Systems. Princeton, May 2024

Topics

• Refinement
• Modularity
◊ Compositionality

• Verification calculus
◊ Soundness and relative completeness
• Architecture
◊ Layered architectures
◊ Distribution
• Assumption/commitment specifications
• Feature interactions
• Explicit parallelism
• Real time
• Cyber-physical systems

Manfred Broy 62Abstraction in Concurrent Systems. Princeton, May 2024

Modularity

A formal system specification and implementation framework is modular, if
• there is an implementation and specification calculus such that for system S

and specification Q (of the same syntactic interface) we write and deduce

S ⊢ Q

which means system S fulfils specification Q

• For every composition operator r for systems S1 and S2 there is a
composition operator r for specifications Q1 and Q2, such that

(S1 ⊢ Q1 Ù S2 ⊢ Q2) Þ S1 r S2 ⊢ Q1 r Q2

• Note that in our case the system model is a subset of the specification model

Architecture

Manfred Broy 64Abstraction in Concurrent Systems. Princeton, May 2024

Hierarchical Architecture: Graphical Representation

S1: Hide c7, c8, c9, c10, c11, c12

S2

S3

S4: Hide c11, c12, c13

S5 S6

S7

c1

c3

c2

c7 c8

c4

c9

c10 c11

c12

c6

c5

c13

Manfred Broy 65Abstraction in Concurrent Systems. Princeton, May 2024

ABP y = x

TRA
 r ≼ c Ù
(#c = ¥ Þ

#r = ¥)

x : Data

c : Bit

z : (Data, Bit)

TRA
 z ≼ u Ù
(#u = ¥ Þ

#z = ¥)

SEND

data(u) ⊑ x
Ù #data(u) = min(#x, 1+#alt(r))
Ù (#alt(r) < #x Þ #u = ¥)

RECE

y = data(z)
Ù c = bits(z)

r : Bit

u : (Data, Bit)

y : Data

Architecture: Alternating Bit

Layered Architectures

Manfred Broy 67Abstraction in Concurrent Systems. Princeton, May 2024

Layers in Layered Architectures

• Layered architectures have many advantages.
• In many applications, therefore layered architectures are applied.

L = (x: X, b: B�y: Y, a: A): R(a, b) Þ Q(x, y)

Let the interface behavior

 S = (x: X�y: Y): Q(x, y)
denote the provided service and
 W = (a: A�b: B): R(a, b)
denote the required service.

System S

x1: X1 xn: Tstr Tn

ym: Tstr Smy1: Tstr S1 …

Layer L

x: X y: Y

a: A b: B

Manfred Broy 68Abstraction in Concurrent Systems. Princeton, May 2024

Layer L1

x1: X1 y1: Y1

a1: A1 b1: B1

Layer L2

x2: X2 y2: Y2

a2: A2 b2: B2

Layer L1

x1: X1 y1: Y1

a1: A1 b1: B1

Layer L2

x2: X2 y2: Y2

a2: A2 b2: B2

Layer L

Forming Layered Architectures

We have two layers (k = 1, 2)
 Lk = (xk: Xk, bk: Bk�yk: Yk, ak: Ak): Rk(ak, bk) Þ Qk(xk, yk)
that fit syntactically together, if
 X1 = A2 and Y1 = B2,
and semantically if the provided service
 S1 = (x1: X1�y1: Y1): Q1(x1, y1)
of the lower layer L1 is a refinement of
the requested service
 W2= (a2: A2�b2: B2): R2(a2, b2)
of the upper layer L2 which means
(note that X1 = B2 and Y1 = A2)
 Q1(x1, y1) Þ R2(x1, y1)

=

Physical Device

a: A b: B

Physical Device

a: A

Control Layer

x: X y: Y

b: B

Layer L1

x1: X1 y1: Y1

a1: A1 b1: B1

Layer L2

x2: X2 y2: Y2

a2: A2 b2: B2Layer L1

x1: X1 y1: Y1

a1: A1 b1: B1

Layer L2

x2: X2 y2: Y2

a2: A2 b2: B2

Layer L
Ä

Manfred Broy 69Abstraction in Concurrent Systems. Princeton, May 2024

Proof

We compose the two layers to a system L
 L
 = Hide x1 Î : X1, y1: Y1: L1 r L2
 = (x2: X2, b1: B1�y2: Y2, a1: A1): $ x1 Î : X1, y1: Y1:

 (R1(a1, b1) Þ Q1(x1, y1)) Ù (R2(x1, y1) Þ Q2(x2, y2))
If Q1(x1, y1) Þ R2(x1, y1) holds we conclude
 L = (x2: X2, b1: B1�y2: Y2, a1: A1): (R1(a1, b1) Þ Q2(x2, y2))

System L which is the result of composing the two layers is a layer again with
the provided service of layer L2 and the requested service of layer L1.

Manfred Broy 70Abstraction in Concurrent Systems. Princeton, May 2024

LA

Layer L1

x1: X1 y1: Y1

a1: A1 b1: B1

Layer L2

x2: X2 y2: Y2

a2: A2 b2: B2

Layer L1

x1: X1 y1: Y1

a1: A1 b1: B1

Layer L2

x2: X2 y2: Y2

a2: A2 b2: B2

Layer Ln

xn: Xn yn: Yn

an: An bn: Bn

. . .

Forming Layered Architectures

If the layers fit together, we get a layered architecture
Lk=(xk:Xk, bk:Bk�yk:Yk, ak:Ak): Rk(ak, bk) Þ Qk(xk, yk)
that fit syntactically together, if
 Xk = Ak+1 and Yk = Bk+1,
and semantically if the provided service
Sk = (xk: Xk�yk: Yk): Qk(xk, yk)
of lower layer Lk is a refinement of
the requested service
Wk+1= (ak+1: Ak+1�bk+1: Bk+1): R2(ak+1, bk+1)
of the upper layer L2 which means
 Qk(xk, yk) Þ Rk+1(xk, yk)

Feature Interaction

Manfred Broy 72Abstraction in Concurrent Systems. Princeton, May 2024

Projection

Given a specification

(X�Y): Q
where X’ Í X, Y’ Í Y

a subservice Q†(X’�Y’) is defined
by projection

 (Q†(X’�Y’))(x’, y’) = $ x Î X, y Î Y: Q(x, y) Ù x’ = x|X’ Ù y’ = y|Y’

Manfred Broy 73Abstraction in Concurrent Systems. Princeton, May 2024

Feature interaction

Can we decompose a system

Q1

X1

Y1

Q2

X2

Y2
…

…

…

…

Q

X

Y

. . .

. . .

into

Manfred Broy 74Abstraction in Concurrent Systems. Princeton, May 2024

Feature Interaction

Let X = X1ÈX2, Y = Y1ÈY2, where the sets X1, X2, Y1, and Y2 are pairwise disjoint

The subservices Q1 = Q|(X1�Y1) and Q2 = Q|(X2�Y2) of service Q are free of
feature interactions if

Q(x, y) = (Q1(x|X1, y|Y1) Ù Q2(x|X2, y|Y2))

Q
Q1

X1

Y1

Q2

X2

Y2
…

…

…

…

Manfred Broy 75Abstraction in Concurrent Systems. Princeton, May 2024

Modelling Physical Devices

• Control Theory (Regelungstechnik)
◊ Control theory deals with the control of dynamical systems in engineered processes and

machines.
◊ The objective is to develop a model or algorithm governing the application of system inputs

to drive the system to a desired state, while minimizing any delay, overshoot, or steady-state
error and ensuring a level of control stability;

◊ often with the aim to achieve a degree of optimality.
• Control Theory works with continuous functions over the parameter time, with

differential and integral equations and the notion of stability

Manfred Broy 76Abstraction in Concurrent Systems. Princeton, May 2024

Controller and System as Relations on Streams

• Controller:

• System

Control Layer_____________________
in x, b: Stream Data
out y, a: Stream Data
Interface Assertion

Physical Device___________________
in a: Stream Data
out b: Stream Data
Interface Assertion

Physical Device

a: A b: B

Physical Device

a: A

Control Layer

x: X y: Y

b: B

Layer L1

x1: X1 y1: Y1

a1: A1 b1: B1

Layer L2

x2: X2 y2: Y2

a2: A2 b2: B2Layer L1

x1: X1 y1: Y1

a1: A1 b1: B1

Layer L2

x2: X2 y2: Y2

a2: A2 b2: B2

Layer L

Manfred Broy 77Abstraction in Concurrent Systems. Princeton, May 2024

Specifying the Physical Device: Simple Example Automatic Window

• The state space is used to model the state of the window.
• A state consists of two attributes:

 mode: {stopped, goin_up, goin_down, alarm}
 p: [0:100]

• Here p stands for position and represents the position of the window.
• The position p = 100 holds if the window is closed, p = 0 holds if the window is

open.
• The mode indicates the actual movement of the window, the position indicates

how far the window is closed.
• The state mode = goin_up, position = 50 models the state of the window

moving up in a situation where it is half closed.

Manfred Broy 78Abstraction in Concurrent Systems. Princeton, May 2024

Input and Output

• The control input to the system and its output are given by the following two
sets:

Input = {open, close, stop}
Output = {open, closed, stopped, alarm, mov_up, mov_down}

Manfred Broy 79Abstraction in Concurrent Systems. Princeton, May 2024

State Transition Function

• The state transition function is defined as follows
◊ (we write for any set M the set M+ = MÈ{e} where e stands for no message):

 D: State ´ Input+ ® Ã(State ´ Output+)

Manfred Broy 80Abstraction in Concurrent Systems. Princeton, May 2024

Table: State Transitions

• The attributes of the next state are represented by mode’ and p’.

mode p input mode’ p’ output
≠ alarm stop stopped = p stopped
stopped e stopped = p stopped
goin_down | stopped close goin_up = p mov_up
goin_up | stopped open goin_down = p mov_down
goin_up = 100 e | close stopped = 100 closed
goin_up < 100 e | close goin_up > p mov_up
goin_up alarm = p alarm
goin_down = 0 e | open stopped = 0 open
goin_down > 0 e | open goin_down < p mov_down
alarm > 0 alarm < p alarm
alarm = 0 stopped = 0 open

Manfred Broy 81Abstraction in Concurrent Systems. Princeton, May 2024

Interpretion of the table

The table Tab. 1 defines the state transition relation by a disjunctive formula. Every line
in the table defines an assertion. For instance, the following line

goin_up = 100 e | close stopped = 100 closed

represents the conjunctive formula:

 mode = goin_up Ù p = 100 Ù (input = e Ú input = close)

 Ù mode’ = stopped Ù p’ = 100 Ù output = closed

These conjunctive formulas represented by the lines of the table are connected by
disjunction to deduce the formula that specifies the state transition from data.

Manfred Broy 82Abstraction in Concurrent Systems. Princeton, May 2024

The Behavior of the Physical System as a Relation on Streams

The specification of a relation representing the function

 j: State ® ((Stream Input ´ Stream Output) ® IB)

that describes the specification of the behavior of the physical device is derived
from the state transition function as follows

j(s)(áeñˆa, árñˆb) = $ s’ Î State: (s’, r) Î D(s, e) Ù j(s’)(a, b)

Manfred Broy 83Abstraction in Concurrent Systems. Princeton, May 2024

State Observations

The behavior of the physical system is defined
◊ By a state machine with input and output
◊ The states model the state of the physical systems
◊ The state machine defines a relation j between

– the input stream(s) – the stream of actuator signals – and
– the output stream(s) – the stream of sensor signals

◊ The relation j can be extended to a behavior f of the
physical systems in terms of its states

f: State ® ((Stream Input ´ Stream Output ´ Stream State) ® IB)

 f(s)(áeñˆa, árñˆb, ás’ñˆs) = ((s’, r) Î D(s, e) Ù f(s’)(a, b, s))

Physical Device

a: A b: B

Physical Device

a: A

Control Layer

x: X y: Y

b: B

s: State Physical Device

a: A b: B

s: State

Manfred Broy 84Abstraction in Concurrent Systems. Princeton, May 2024

Conclusion

• We compose the physical device specified by the
interface assertion f(s0)(a, b, s) where s0 is the
initial state of the physical device with the
◊ control layer specified by the interface assertion CL(x, b, y,

a) and get the interface assertion of the composed system
$ a, b: CL(x, b, y, a) Ù f(s0)(a, b, s)

Physical Device

a: A b: B

Physical Device

a: A

Control Layer

x: X y: Y

b: B

Layer L1

x1: X1 y1: Y1

a1: A1 b1: B1

Layer L2

x2: X2 y2: Y2

a2: A2 b2: B2Layer L1

x1: X1 y1: Y1

a1: A1 b1: B1

Layer L2

x2: X2 y2: Y2

a2: A2 b2: B2

Layer L

stream of states

Manfred Broy 85Abstraction in Concurrent Systems. Princeton, May 2024

Design Framework

Semantic driven system development
• Encapsulation
◊ Form architectural elements with interfaces that encapsulate the access by interfaces

• Information hiding
◊ Hide implementation details not needed to understand the effect on the context
• Functional abstraction: Model the interface including interface behavior
• Composition
◊ Define the interface behavior of composed systems from the interface behavior of the

components

• Interface refinement
◊ Make specifications more detailed
• Modularity (generalization of Liskov‘s substitution principle)
◊ Guarantee that refinement of specifications of components leads to refinement of

specifications of composed systems

Manfred Broy 86Abstraction in Concurrent Systems. Princeton, May 2024

Concluding Remarks

• Expressive power and flexibility
◊ In principle all kinds of behavior can be

specified
◊ Specifications can be noncausal, weakly

or strongly causal, realizable or fully
realizable

• Specification, composition,
verification and refinement by a
calculus that is
◊ Sound
◊ Relatively complete
◊ Making specification f.r. (often s.c. is

enough) is sufficient for all proofs

• Methodological extensions
◊ Assumption/Commitment specifications
◊ Time free specifications
• Architecture design by specifications
◊ Distributed concurrent systems
• Further Extensions
◊ Infinite networks (recursive definitions of

networks)
◊ Dynamic systems
◊ Probability

Manfred Broy 87Abstraction in Concurrent Systems. Princeton, May 2024

Topics for future research

• A tool for proving in the calculus

• A programming language for implementation

• Probabilities for interface behavior

• A time free version for non-time-sensitive interface specifications
◊ Ambiguous operators

